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INSANE Hands-on
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Goal of the hands-on session

The goal of this hands-on session is to demonstrate that INSANE makes kernel-bypass acceleration 

as simple and portable as standard networking.

We will demonstrate:

• The ease of porting existing code to INSANE;

• The ease of switching among different kernel-bypass frameworks;

• The performance difference among different kernel-bypass frameworks;

Participants will leave with a working template to build their own accelerated applications.
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Agenda of the hands-on session

1. Fundamentals of INSANE

2. Example application

Application: ping-pong app

Baseline: The NATS middleware

3. Environment Setup

Connect to remote resources (SSH)

Explore provided tooling & example project

3. Porting the application to INSANE

Port the ping-pong application from NATS to INSANE

Observe performance with diverse network plugins

4. Wrap-Up & Q&A

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

Format:

Guided coding + live testing.
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INSANE provides a general-purpose 

accelerated datapath:

1. Through an agnostic, high-level API,

2. Supported by a userspace datapath,

with the performance gains of OS bypass

and the centralization advantages of a 

traditional OS kernel

INSANE Overview

OS datapath

Application

INSANE API

TCP/IP

XDP
DPDK RDMA

Network Card (NIC)

INSANE 

Userspace 

datapath

Application

Socket API

Open Source:

https://github.com/MMw-Unibo/INSANE

Standard kernel-

based datapath
INSANE-ly accelerated 

datapath
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INSANE: The API

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

Currently available in

• C

• Python
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INSANE defines the following concepts

1. Stream

A QoS domain. Communication is characterized 
by the same QoS policies. Will map to a specific 
network plugin.

2. Sink / Source

Receiver / Sender of INSANE buffers. Have a 
user-defined ID. Sink/Source with the same ID 
form a communication channel.

Must be associated to a stream.

3. Application ID

UDP/TCP port. Only apps with the same ID can 
communicate.

INSANE Quick Start: main concepts (1/3) Application 1 [id=4444]

Stream

Source

(channel id = 1)

Application 2 [id=4444]

Stream

Sink

(channel id = 1)

Communication Channel

(id = 1)

fast datapath

low consumption
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INSANE stream: A QoS domain. Communication is characterized by the same QoS policies. Will 

map to a specific network plugin.

QoS policies:

1. Reliability:         reliable / unreliable Selects between TCP and UDP

2. Datapath:        default / fast Kernel Bypass no / yes

3. Consumption:  polling / default if datapath fast, software (DPDK, XDP) or 

hardware (RDMA)

4. Determinism: default / deterministic Packet scheduling policy. 

(Not implemented yet)

INSANE Quick Start: main concepts (2/3)
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The INSANE API is asynchronous and lets apps access a DMA-capable heap for zero-copy I/O.

INSANE Quick Start: main concepts (3/3)

Source Application

INSANE

datapath managed IO memory

Network Card (NIC)

1 2

00111101

3

4

5

Clear memory ownership semantic: memory is 

allocated by INSANE, and applications borrow 

memory slots from it.

Memory buffers must be required to send

Memory buffers must be released after receive
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The NATS middleware

A lightweight publish/subscribe messaging system designed for extreme simplicity, 

scalability, and low operational overhead .

• Offers a server-based, pub/sub communication model.

• Very popular in edge and microservice architectures

• Easy to use and install, but relies on kernel-based networking

• Natively written in Go, but has Python bindings (and many others)
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https://nats.io/

https://nats.io/
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Example Application: a ping-pong test

CLIENT
echo

SERVER

TOPIC: “ping”

TOPIC: “pong”

• The client measures the round-trip time. 

• The server and the client will be deployed on two remote VMs. 

• The application is written in Python, in two versions:

o using the NATS middleware → provided in the tutorial repository

o using the INSANE middleware → we will create it step-by-step
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Ping-pong application with NATS and with INSANE

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

CLIENT echo
SERVER

TOPIC: “ping”

TOPIC: “pong”

NATS

Server

TOPIC: “ping”

TOPIC: “pong”

CLIENT echo
SERVER

TOPIC: “ping”

TOPIC: “pong”

NATS

centralized 

architecture

INSANE

decentralized 

architecture
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Hands-on testbed

Host 2

VM1 VM2

Host 1
100 Gbps

SR-IOV VF

passthrough
SR-IOV VF

passthrough

VMs receive a SR-IOV VF in passthrough, i.e., a hardware slice of the NIC. 

Performance should match bare-metal settings.
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Starting example: NATS-based ping-pong application deployment 

CLIENT echo
SERVER

TOPIC: “ping”

TOPIC: “pong”

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

NATS

Server

VM1 VM2
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Goal: INSANE-based ping-pong application deployment 

CLIENT
echo

SERVER

TOPIC: “ping”

TOPIC: “pong”
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INSANE

daemon

VM1 VM2

INSANE

daemon
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Accessing the VMs

The instructions to access the VMs will be provided by the tutorial presenter

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy
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Tutorial repository structure

Once inside the machines, you will find an insane-tutorial directory, with the starter kit

You can cd into the insane-tutorial repository, you will find:

• a nats directory: contains the NATS server binaries and the NATS-based ping-pong application

• an insane directory: contains the INSANE binaries, config and lib files needed to create the 

INSANE-based ping-pong application. 

For those not attending the tutorial, you can download the files from:

NATS binaries: https://nats.io/

INSANE binaries: https://github.com/MMw-Unibo/INSANE

TODO: we should say that INSANE is pre-installed… and also the repo is pre-cloned…

But include instructions for others to download and build everything

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

Available at:

https://github.com/ellerre/insane-tutorial

https://nats.io/
https://github.com/MMw-Unibo/INSANE
https://github.com/MMw-Unibo/INSANE
https://github.com/MMw-Unibo/INSANE
https://github.com/ellerre/insane-tutorial
https://github.com/ellerre/insane-tutorial
https://github.com/ellerre/insane-tutorial
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Starting the NATS-based application

After taking a look at the Python code, you can activate the virtual env:

source venv/bin/activate

Then, execute the NATS-based example:

1. On VM1, start the NATS server:              ./nats-server --addr=<local_ip> --port=4222

2. On VM2, start the echo server: python3 pong.py --server-ip <ip> --port 4222

3. On VM1, start the client:     python3 ping.py --server-ip <ip> --port 4222 --size 64

The client will start printing RTT values (in microseconds) 

Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy
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Porting the application to INSANE

The tutorial will guide the participants to modify the NATS-based ping-pong application, thus

creating an INSANE-based ping-pong application.

People not attending the tutorial will find the solution (ping.py / pong.py) in the online repository 

of the tutorial, under the insane directory. 

Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy
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Starting the INSANE-based application

You can execute the INSANE-based example:

1. On VM2, start the INSANE daemon:              sudo ./nsnd

2. On VM2, start the echo server: sudo python3 pong.py --qos [fast|default]

3. On VM1, start the INSANE daemon:              sudo ./nsnd

4. On VM1, start the client:     sudo python3 ping.py --qos [fast|default] --size <size>

The config files of the daemon (nsnd.cfg) and app (nsn-app.cfg) must be in the same directory of 

the binaries. The client will start printing RTT values (in microseconds) 

Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy
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INSANE-based application: easily switch to kernel-bypass!

You can execute the INSANE-based example in two ways:

1. In compatibility mode:   --qos default

This will map the communication to the kernel-based TCP stack

2.  In accelerated mode:     --qos fast

This will map the communication to the DPDK-based TCP stack

The performance difference between the two modes is significant.

You can check the CPU to assess the resource consumption wrt NATS.

Note: even with more concurrent applications, INSANE will use the same number of polling cores, 

whose cost can thus be shared. 

Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy
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INSANE-based application: considerations (1/2)

• QoS affects performance: the fast mode delivers clearly lower RTT than the default one.

• Acceleration without expertise: INSANE transparently selects high-performance backends (e.g., 

DPDK, RDMA). No low-level tuning required.

• Portability preserved: existing applications can be migrated with minimal code changes

• Ease of programming: the ping-pong example showed how INSANE boosts performance while 

keeping the development workflow simple.

Key Takeaway:

High-performance kernel-bypass networking is attainable for everyone: INSANE makes acceleration 

(finally!) easy.

Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy



65

INSANE-based application: considerations (2/2)

To appreciate the ease of programming, consider:

ping.py + pong.py 84 lines of high-level Python code

That would be:

dpdk-pingpong.c 819 lines of low-level C code 

~ 150,000 lines of C code for a userspace TCP stack (TLDK) 

rdma-pingpong.c 790 lines of low-level C code 

Key Takeaway: High-performance kernel-bypass networking is attainable for everyone. INSANE 

makes acceleration (finally!) easy.

Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

10x more lines,

requiring expertise
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• High-performance kernel-bypass 

networking is attainable for everyone. 

• INSANE makes acceleration (finally!) as 

easy as standard networking.

• This tutorial leaves with a working 

template to easily build your own 

accelerated applications.

Take-away message

OS datapath

Application

INSANE API

TCP/IP

XDP
DPDK RDMA

Network Card (NIC)

INSANE 

Userspace 

datapath

Application

Socket API

Open Source:

https://github.com/MMw-Unibo/INSANE

Standard kernel-

based datapath
INSANE-ly accelerated 

datapath
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