
43

INSANE Hands-on

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

44

Goal of the hands-on session

The goal of this hands-on session is to demonstrate that INSANE makes kernel-bypass acceleration

as simple and portable as standard networking.

We will demonstrate:

• The ease of porting existing code to INSANE;

• The ease of switching among different kernel-bypass frameworks;

• The performance difference among different kernel-bypass frameworks;

Participants will leave with a working template to build their own accelerated applications.

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

45

Agenda of the hands-on session

1. Fundamentals of INSANE

2. Example application

Application: ping-pong app

Baseline: The NATS middleware

3. Environment Setup

Connect to remote resources (SSH)

Explore provided tooling & example project

3. Porting the application to INSANE

Port the ping-pong application from NATS to INSANE

Observe performance with diverse network plugins

4. Wrap-Up & Q&A

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

Format:

Guided coding + live testing.

46

INSANE provides a general-purpose

accelerated datapath:

1. Through an agnostic, high-level API,

2. Supported by a userspace datapath,

with the performance gains of OS bypass

and the centralization advantages of a

traditional OS kernel

INSANE Overview

OS datapath

Application

INSANE API

TCP/IP

XDP
DPDK RDMA

Network Card (NIC)

INSANE

Userspace

datapath

Application

Socket API

Open Source:

https://github.com/MMw-Unibo/INSANE

Standard kernel-

based datapath
INSANE-ly accelerated

datapath

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

https://github.com/MMw-Unibo/INSANE
https://github.com/MMw-Unibo/INSANE
https://github.com/MMw-Unibo/INSANE

47

INSANE: The API

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

Currently available in

• C

• Python

48

INSANE defines the following concepts

1. Stream

A QoS domain. Communication is characterized
by the same QoS policies. Will map to a specific
network plugin.

2. Sink / Source

Receiver / Sender of INSANE buffers. Have a
user-defined ID. Sink/Source with the same ID
form a communication channel.

Must be associated to a stream.

3. Application ID

UDP/TCP port. Only apps with the same ID can
communicate.

INSANE Quick Start: main concepts (1/3) Application 1 [id=4444]

Stream

Source

(channel id = 1)

Application 2 [id=4444]

Stream

Sink

(channel id = 1)

Communication Channel

(id = 1)

fast datapath

low consumption

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

49

INSANE stream: A QoS domain. Communication is characterized by the same QoS policies. Will

map to a specific network plugin.

QoS policies:

1. Reliability: reliable / unreliable Selects between TCP and UDP

2. Datapath: default / fast Kernel Bypass no / yes

3. Consumption: polling / default if datapath fast, software (DPDK, XDP) or

hardware (RDMA)

4. Determinism: default / deterministic Packet scheduling policy.

(Not implemented yet)

INSANE Quick Start: main concepts (2/3)

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

50

The INSANE API is asynchronous and lets apps access a DMA-capable heap for zero-copy I/O.

INSANE Quick Start: main concepts (3/3)

Source Application

INSANE

datapath managed IO memory

Network Card (NIC)

1 2

00111101

3

4

5

Clear memory ownership semantic: memory is

allocated by INSANE, and applications borrow

memory slots from it.

Memory buffers must be required to send

Memory buffers must be released after receive

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

51

The NATS middleware

A lightweight publish/subscribe messaging system designed for extreme simplicity,

scalability, and low operational overhead .

• Offers a server-based, pub/sub communication model.

• Very popular in edge and microservice architectures

• Easy to use and install, but relies on kernel-based networking

• Natively written in Go, but has Python bindings (and many others)

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

https://nats.io/

https://nats.io/

52

Example Application: a ping-pong test

CLIENT
echo

SERVER

TOPIC: “ping”

TOPIC: “pong”

• The client measures the round-trip time.

• The server and the client will be deployed on two remote VMs.

• The application is written in Python, in two versions:

o using the NATS middleware → provided in the tutorial repository

o using the INSANE middleware → we will create it step-by-step

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

53

Ping-pong application with NATS and with INSANE

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

CLIENT echo
SERVER

TOPIC: “ping”

TOPIC: “pong”

NATS

Server

TOPIC: “ping”

TOPIC: “pong”

CLIENT echo
SERVER

TOPIC: “ping”

TOPIC: “pong”

NATS

centralized

architecture

INSANE

decentralized

architecture

54

Hands-on testbed

Host 2

VM1 VM2

Host 1
100 Gbps

SR-IOV VF

passthrough
SR-IOV VF

passthrough

VMs receive a SR-IOV VF in passthrough, i.e., a hardware slice of the NIC.

Performance should match bare-metal settings.

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

55

Starting example: NATS-based ping-pong application deployment

CLIENT echo
SERVER

TOPIC: “ping”

TOPIC: “pong”

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

NATS

Server

VM1 VM2

56

Goal: INSANE-based ping-pong application deployment

CLIENT
echo

SERVER

TOPIC: “ping”

TOPIC: “pong”

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

INSANE

daemon

VM1 VM2

INSANE

daemon

58

Accessing the VMs

The instructions to access the VMs will be provided by the tutorial presenter

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

59

Tutorial repository structure

Once inside the machines, you will find an insane-tutorial directory, with the starter kit

You can cd into the insane-tutorial repository, you will find:

• a nats directory: contains the NATS server binaries and the NATS-based ping-pong application

• an insane directory: contains the INSANE binaries, config and lib files needed to create the

INSANE-based ping-pong application.

For those not attending the tutorial, you can download the files from:

NATS binaries: https://nats.io/

INSANE binaries: https://github.com/MMw-Unibo/INSANE

TODO: we should say that INSANE is pre-installed… and also the repo is pre-cloned…

But include instructions for others to download and build everything

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

Available at:

https://github.com/ellerre/insane-tutorial

https://nats.io/
https://github.com/MMw-Unibo/INSANE
https://github.com/MMw-Unibo/INSANE
https://github.com/MMw-Unibo/INSANE
https://github.com/ellerre/insane-tutorial
https://github.com/ellerre/insane-tutorial
https://github.com/ellerre/insane-tutorial

60

Starting the NATS-based application

After taking a look at the Python code, you can activate the virtual env:

source venv/bin/activate

Then, execute the NATS-based example:

1. On VM1, start the NATS server: ./nats-server --addr=<local_ip> --port=4222

2. On VM2, start the echo server: python3 pong.py --server-ip <ip> --port 4222

3. On VM1, start the client: python3 ping.py --server-ip <ip> --port 4222 --size 64

The client will start printing RTT values (in microseconds)

Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

61

Porting the application to INSANE

The tutorial will guide the participants to modify the NATS-based ping-pong application, thus

creating an INSANE-based ping-pong application.

People not attending the tutorial will find the solution (ping.py / pong.py) in the online repository

of the tutorial, under the insane directory.

Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

62

Starting the INSANE-based application

You can execute the INSANE-based example:

1. On VM2, start the INSANE daemon: sudo ./nsnd

2. On VM2, start the echo server: sudo python3 pong.py --qos [fast|default]

3. On VM1, start the INSANE daemon: sudo ./nsnd

4. On VM1, start the client: sudo python3 ping.py --qos [fast|default] --size <size>

The config files of the daemon (nsnd.cfg) and app (nsn-app.cfg) must be in the same directory of

the binaries. The client will start printing RTT values (in microseconds)

Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

63

INSANE-based application: easily switch to kernel-bypass!

You can execute the INSANE-based example in two ways:

1. In compatibility mode: --qos default

This will map the communication to the kernel-based TCP stack

2. In accelerated mode: --qos fast

This will map the communication to the DPDK-based TCP stack

The performance difference between the two modes is significant.

You can check the CPU to assess the resource consumption wrt NATS.

Note: even with more concurrent applications, INSANE will use the same number of polling cores,

whose cost can thus be shared.

Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

64

INSANE-based application: considerations (1/2)

• QoS affects performance: the fast mode delivers clearly lower RTT than the default one.

• Acceleration without expertise: INSANE transparently selects high-performance backends (e.g.,

DPDK, RDMA). No low-level tuning required.

• Portability preserved: existing applications can be migrated with minimal code changes

• Ease of programming: the ping-pong example showed how INSANE boosts performance while

keeping the development workflow simple.

Key Takeaway:

High-performance kernel-bypass networking is attainable for everyone: INSANE makes acceleration

(finally!) easy.

Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

65

INSANE-based application: considerations (2/2)

To appreciate the ease of programming, consider:

ping.py + pong.py 84 lines of high-level Python code

That would be:

dpdk-pingpong.c 819 lines of low-level C code

~ 150,000 lines of C code for a userspace TCP stack (TLDK)

rdma-pingpong.c 790 lines of low-level C code

Key Takeaway: High-performance kernel-bypass networking is attainable for everyone. INSANE

makes acceleration (finally!) easy.

Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

10x more lines,

requiring expertise

66

• High-performance kernel-bypass

networking is attainable for everyone.

• INSANE makes acceleration (finally!) as

easy as standard networking.

• This tutorial leaves with a working

template to easily build your own

accelerated applications.

Take-away message

OS datapath

Application

INSANE API

TCP/IP

XDP
DPDK RDMA

Network Card (NIC)

INSANE

Userspace

datapath

Application

Socket API

Open Source:

https://github.com/MMw-Unibo/INSANE

Standard kernel-

based datapath
INSANE-ly accelerated

datapath

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

https://github.com/MMw-Unibo/INSANE
https://github.com/MMw-Unibo/INSANE
https://github.com/MMw-Unibo/INSANE

site.unibo.it/middleware

Lorenzo Rosa

Department of Computer Science and Engineering

University of Bologna – Italy

lorenzo.rosa@unibo.it

mailto:andrea.garbugli@unibo.it

	INSANE Hands-on
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

