
This Is INSANE!

Kernel-Bypass Networking Finally Made Easy

Lorenzo Rosa

Department of Computer Science and Engineering

University of Bologna, Italy

December 15th, 2025

26th ACM/IFIP International Middleware Conference - Nashville, TN, USA

2

Introduction

Lorenzo Rosa

University of Bologna, Italy

• Postdoctoral researcher at the University of Bologna

• Specializing in cloud/edge computing, serverless systems,

middleware, and industrial networking, with a focus on QoS

and host-network performance.

• Main designer and developer of the INSANE middleware,

subject of today’s tutorial.

Email: lorenzo.rosa@unibo.it

Website: https://www.unibo.it/sitoweb/lorenzo.rosa/

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

mailto:lorenzo.rosa@unibo.it
https://www.unibo.it/sitoweb/lorenzo.rosa/

3

Agenda

1. Context, Motivation, Background (~ 45 min)

Motivation & Overview of modern acceleration stacks (SmartNICs, RDMA, DPDK, XDP), their

evolution, and the challenges of using them for portable applications.

2. The INSANE Middleware (~ 45 min)

Architecture, goals, and design of INSANE. Includes relevant related work and design rationale.

Coffee Break

3. Hands-On Session with INSANE (~ 90 min)

Guided exercise using a NATS-based application whose communication layer is incrementally

replaced with INSANE.

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

4

Info and material

• Web page of the tutorial: http://insane-tutorial.ing.unibo.it

• All the slides

• Pointers to the repositories

• Additional material

• Github repository for this tutorial: https://github.com/ellerre/insane-tutorial

• INSANE middleware repository: https://github.com/MMw-Unibo/INSANE

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

http://disi059063.ing.unibo.it/
http://disi059063.ing.unibo.it/
http://disi059063.ing.unibo.it/
http://disi059063.ing.unibo.it/
http://disi059063.ing.unibo.it/
http://disi059063.ing.unibo.it/
http://disi059063.ing.unibo.it/
https://github.com/ellerre/insane-tutorial
https://github.com/ellerre/insane-tutorial
https://github.com/ellerre/insane-tutorial
https://github.com/MMw-Unibo/INSANE
https://github.com/MMw-Unibo/INSANE
https://github.com/MMw-Unibo/INSANE

5

Introduction

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

6

General-purpose computing

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

Slow improvements

lead to specialization

7

A new golden age: toward specialization

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

8

What about software?

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

Software components are designed for general-

purpose architectures:

• Operating Systems

• Hypervisors

• Applications

• user applications

• middleware services

Application

OS kernel

Network Card (NIC)

Hypervisor

Software systems must evolve to accommodate the emerging specialized architectures

9

General-purpose networking becomes a bottleneck

Operating Systems and Hypervisors were

designed under the assumption:

I/O was slower than CPU processing

Specialized hardware reverses this assumption:

I/O is much faster than CPU processing

Q1. How can we leverage the performance of

modern networks and accelerators?

Q2. Can we preserve application portability?

CPU cycles

breakdown

for an

Average K/V

store request

TAS [EuroSys’19]

85%

OS Networking

6%

Application

Logic

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

10

Kernel-Bypass Networking

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

11

Kernel-bypass approach: completely remove the OS from datapath

Kernel bypass improves I/O at the expenses of generality, portability, and virtualization

Application

OS kernel

Network Card (NIC)

data copies

context switches

inefficient protocol

processing

Application

Network Card (NIC)

or

Hardware Accelerator

zero-copy transfers

no context switches

simplified protocol

processing

Hypervisor

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

12

Kernel-bypass approach

The kernel-bypass approach enables developers to fully leverage the

performance of modern specialized hardware.

There are many flavors of kernel-bypassing, but they all follow three

key principles:

• zero-copy data transfers: reduce memory copy

• minimal context switches: improve cache efficiency & CPU usage

• asynchronous data processing: involve the CPU on the control

plane, leave the data plane to the hardware.

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

Application

Network Card (NIC)

or

Hardware

Accelerator

13

Kernel-bypass approach potential: example

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

Example: TCP echo server, 64 bytes messages

Testbed: an 8-core VM attached to a 200 Gbps NVIDIA

ConnectX-6 (passthrough)

Kernel-bypassing can provide orders-of-magnitude

improvements over standard OS-based networking.

12x

14

Several options available today for high-performance I/O

Hardware offloading has the highest potential, but:

▪ not always available

▪ raises security concerns with multi-tenancy

▪ can be wildly heterogeneous

Software-based alternatives offer lower performance, but

▪ still faster than OS-based networking

▪ usually available on commodity hardware

RDMA

Programmable

hardware

DPDK

Linux XDP

Rosa et al., Empowering Cloud Computing with Network Acceleration: A Survey.

Communications Surveys & Tutorials, 2024

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

15

Kernel-bypass drawbacks: complexity and heterogeneity

Application

OS kernel

Network Card (NIC)

Hypervisor

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

When we remove the kernel:

1. Which interface is exposed to the application?

2. Who implements the network stack (TCP/IP)?

3. Who manages memory management, address translation,

etc?

Different kernel-bypass techniques have different answers,

forcing applications to specialize for one of them.

16

RDMA NIC

DPDK libs

OS kernel

High-performance I/O is deeply heterogeneous

Application Application Application

Linux XDP DPDK
RDMA NICs &

Programmable HW

AF_XDP Socket RTE API Verbs API1 Complex & Low-Level APIs

2 Scattered OS services

NICNIC

Address transl.

Address transl.

Network StackMemory Mgmt

The complexity of this

heterogeneous landscape is

exposed to user applications

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

Network StackNetwork Stack Memory Mgmt

Memory Mgmt

Address transl.

17

Kernel-bypass drawbacks: complexity and heterogeneity

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

Kernel-bypassing approach require:

• Application re-writing, harming portability.

• Complex and low-level API, requiring coding expertise.

• Userspace re-implementation of typical OS services, leading to code duplication.

The average cloud users cannot afford this complexity, despite the potential performance

advantages.

High-performance I/O is not yet available as a service to cloud applications

18

Example: a “hello world” application

A simple C application sending a “hello world” string from a client to a remote server requires:

31 lines of code with kernel-based TCP

212 lines of code with DPDK + custom userspace TCP/IP stack (~ 150,000 loc)

~200 lines of code with RDMA

The C code is low-level, requires re-implementation of services (e.g., memory management) and

requires careful optimizations to yield maximum performance.

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

19

RDMA NIC

Which architecture for Network Acceleration as a Service (NAaaS)?

1 Portable, high-level API

2 efficient OS features

offered as a service to

applications

NAaaS: a general-purpose,

high-perf datapath with:

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

DPDK libs

OS kernel

Application Application Application

Linux XDP DPDK
RDMA NICs &

Programmable HW

AF_XDP Socket RTE API Verbs API

NICNIC

Address transl.

Address transl.

Network StackMemory Mgmt

Network StackNetwork Stack Memory Mgmt

Memory Mgmt

Address transl.

20

A Middleware approach: existing solutions

Cloud apps already rely on network middleware to hide the complexity

of communication among application components

NATS, ZeroMQ, MQTT, DDS, RabbitMQ, Kafka

Those systems offer QoS options to control semantic properties of the

communication (retransmissions, handshakes, etc.)

Their focus is on ease of deployment and portability; hence they do not

support kernel-bypassing. They are not designed for the emerging high-

performance networking hardware.

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

21

A middleware approach for portable accelerated

applications in the cloud should define:

1. An interface layer exposing a stack-agnostic set

of primitives to user applications.

A system layer providing OS system services in a

centralized fashion (OS-style), shared by

multiple applications.

An I/O layer implementing network ops for

each acceleration technology.

A Middleware approach to kernel-bypassing in the Cloud

Kernel XDP DPDK RDMA

OS servicesSystem Layer

1

2

I/O Layer

3

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

Application

Uniform interface

Application

22

A possible approach: put networking logic into application

binaries (library OS).

Explored by Demikernel [SOSP’21] to solve a similar problem

and inspired by IX [OSDI ‘14], Arrakis [OSDI ‘14], and many

others.

Advantages:

• No IPC required

Disadvantages:

• requires spin-polling in every application

• high communication setup time

• no centralization (i.e., scheduling)

• difficult to use in virtual environments (VMs, containers)

A possible approach: Library OS

App

LibOS

App

LibOS

Network Hardware

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

23

A better approach for the cloud is the sidecar,

explored by TAS [EuroSys’19] or SNAP [SOSP’19] to solve

a similar problem. More recently, Pegasus [EuroSys’25].

Disadvantages:

• IPC between apps and the datapath process

Advantages:

• centralized resource management

• data and instruction locality, resource efficiency

• scheduling and multiplexing options

• short communication setup time

• decoupled release cycles wrt applications

A sidecar approach to kernel-bypassing in the Cloud

15/12/2025Lorenzo Rosa, This Is INSANE! Kernel-Bypass Networking Finally Made Easy

App

Sidecar

App

Network Hardware

	Presentation
	Slide 1
	Slide 2
	Slide 3
	Slide 4

	Introduction
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

	Kernel-Bypass Networking
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

